Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 61
Filtre
1.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article Dans Anglais | MEDLINE | ID: covidwho-20234933

Résumé

Fusion among different cell populations represents a rare process that is mediated by both intrinsic and extracellular events. Cellular hybrid formation is relayed by orchestrating tightly regulated signaling pathways that can involve both normal and neoplastic cells. Certain important cell merger processes are often required during distinct organismal and tissue development, including placenta and skeletal muscle. In a neoplastic environment, however, cancer cell fusion can generate new cancer hybrid cells. Following survival during a subsequent post-hybrid selection process (PHSP), the new cancer hybrid cells express different tumorigenic properties. These can include elevated proliferative capacity, increased metastatic potential, resistance to certain therapeutic compounds, and formation of cancer stem-like cells, all of which characterize significantly enhanced tumor plasticity. However, many parts within this multi-step cascade are still poorly understood. Aside from intrinsic factors, cell fusion is particularly affected by extracellular conditions, including an inflammatory microenvironment, viruses, pH and ionic stress, hypoxia, and exosome signaling. Accordingly, the present review article will primarily highlight the influence of extracellular events that contribute to cell fusion in normal and tumorigenic tissues.


Sujets)
Carcinogenèse , Cellules souches tumorales , Humains , Fusion cellulaire , Lignée cellulaire tumorale , Cellules hybrides , Carcinogenèse/métabolisme , Cellules souches tumorales/métabolisme , Microenvironnement tumoral
2.
J Med Virol ; 95(5): e28768, 2023 05.
Article Dans Anglais | MEDLINE | ID: covidwho-20234815

Résumé

BACKGROUND: New strategies are needed to improve the treatment of patients with breast cancer (BC). Oncolytic virotherapy is a promising new tool for cancer treatment but still has a limited overall durable antitumor response. A novel replicable recombinant oncolytic herpes simplex virus type 1 called VG161 has been developed and has demonstrated antitumor effects in several cancers. Here, we explored the efficacy and the antitumor immune response of VG161 cotreatment with paclitaxel (PTX) which as a novel oncolytic viral immunotherapy for BC. METHODS: The antitumor effect of VG161 and PTX was confirmed in a BC xenograft mouse model. The immunostimulatory pathways were tested by RNA-seq and the remodeling of tumor microenvironment was detected by Flow cytometry analysis or Immunohistochemistry. Pulmonary lesions were analyzed by the EMT6-Luc BC model. RESULTS: In this report, we demonstrate that VG161 can significantly represses BC growth and elicit a robust antitumor immune response in a mouse model. The effect is amplified when combined with PTX treatment. The antitumor effect is associated with the infiltration of lymphoid cells, including CD4+ T cells, CD8+ T cells, and NK cells (expressing TNF and IFN-γ), and myeloid cells, including macrophages, myeloid-derived suppressor cells, and dendritic cell cells. Additionally, VG161 cotreatment with PTX showed a significant reduction in BC lung metastasis, which may result from the enhanced CD4+ and CD8+ T cell-mediated responses. CONCLUSIONS: The combination of PTX and VG161 is effective for repressing BC growth by inducing proinflammatory changes in the tumor microenvironment and reducing BC pulmonary metastasis. These data will provide a new strategy and valuable insight for oncolytic virus therapy applications in primary solid or metastatic BC tumors.


Sujets)
Herpèsvirus humain de type 1 , Tumeurs , Thérapie virale de cancers , Virus oncolytiques , Humains , Animaux , Souris , Paclitaxel/usage thérapeutique , Paclitaxel/pharmacologie , Lymphocytes T CD8+ , Virus oncolytiques/génétique , Tumeurs/anatomopathologie , Lignée cellulaire tumorale , Microenvironnement tumoral
3.
J Immunother Cancer ; 11(5)2023 05.
Article Dans Anglais | MEDLINE | ID: covidwho-20233460

Résumé

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer. However, only a portion of patients respond to such treatments. Therefore, it remains a prevailing clinical need to identify factors associated with acquired resistance or lack of response to ICIs. We hypothesized that the immunosuppressive CD71+ erythroid cells (CECs) within the tumor and/or distant 'out-of-field' may impair antitumor response. METHODS: We studied 38 patients with cancer through a phase II clinical trial investigating the effects of oral valproate combined with avelumab (anti-programmed death-ligand 1 (PD-L1)) in virus-associated solid tumors (VASTs). We quantified the frequency/functionality of CECs in blood and biopsies of patients. Also, we established an animal model of melanoma (B16-F10) to investigate the possible effects of erythropoietin (EPO) treatment on anti-PD-L1 therapy. RESULTS: We found a substantial expansion of CECs in the blood of patients with VAST compared with healthy controls. We noted that the frequency of CECs in circulation was significantly higher at the baseline and throughout the study in non-responders versus responders to PD-L1 therapy. Moreover, we observed that CECs in a dose-dependent manner suppress effector functions of autologous T cells in vitro. The subpopulation of CD45+CECs appears to have a more robust immunosuppressive property compared with their CD45- counterparts. This was illustrated by a stronger expression of reactive oxygen species, PD-L1/PD-L2, and V-domain Ig suppressor of T-cell activation in this subpopulation. Lastly, we found a higher frequency of CECs in the blood circulation at the later cancer stage and their abundance was associated with anemia, and a poor response to immunotherapy. Finally, we report the expansion of CECs in the spleen and tumor microenvironment of mice with melanoma. We found that although CECs in tumor-bearing mice secret artemin, this was not the case for VAST-derived CECs in humans. Notably, our results imply that EPO, a frequently used drug for anemia treatment in patients with cancer, may promote the generation of CECs and subsequently abrogates the therapeutic effects of ICIs (eg, anti-PD-L1). CONCLUSIONS: Our results demonstrate that anemia by the expansion of CECs may enhance cancer progression. Notably, measuring the frequency of CECs may serve as a valuable biomarker to predict immunotherapy outcomes.


Sujets)
Mélanome , Lymphocytes T , Humains , Animaux , Souris , Lymphocytes T/anatomopathologie , Immunothérapie/méthodes , Cellules érythroïdes/anatomopathologie , Stadification tumorale , Microenvironnement tumoral
4.
Int Rev Cell Mol Biol ; 368: 61-108, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-2322260

Résumé

Tumor-associated macrophages (TAMs) are one of the most abundant immune components in the tumor microenvironment and play a plethora of roles in regulating tumorigenesis. Therefore, the therapeutic targeting of TAMs has emerged as a new paradigm for immunotherapy of cancer. Herein, the review summarizes the origin, polarization, and function of TAMs in the progression of malignant diseases. The understanding of such knowledge leads to several distinct therapeutic strategies to manipulate TAMs to battle cancer, which include those to reduce TAM abundance, such as depleting TAMs or inhibiting their recruitment and differentiation, and those to harness or boost the anti-tumor activities of TAMs such as blocking phagocytosis checkpoints, inducing antibody-dependent cellular phagocytosis, and reprogramming TAM polarization. In addition, modulation of TAMs may reshape the tumor microenvironment and therefore synergize with other cancer therapeutics. Therefore, the rational combination of TAM-targeting therapeutics with conventional therapies including radiotherapy, chemotherapy, and other immunotherapies is also reviewed. Overall, targeting TAMs presents itself as a promising strategy to add to the growing repertoire of treatment approaches in the fight against cancer, and it is hopeful that these approaches currently being pioneered will serve to vastly improve patient outcomes and quality of life.


Sujets)
Tumeurs , Macrophages associés aux tumeurs , Humains , Immunothérapie , Macrophages , Tumeurs/anatomopathologie , Qualité de vie , Microenvironnement tumoral
5.
Blood ; 141(18): 2194-2205, 2023 05 04.
Article Dans Anglais | MEDLINE | ID: covidwho-2318740

Résumé

Peripheral T-cell lymphomas (PTCL) with T-follicular helper phenotype (PTCL-TFH) has recurrent mutations affecting epigenetic regulators, which may contribute to aberrant DNA methylation and chemoresistance. This phase 2 study evaluated oral azacitidine (CC-486) plus cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) as initial treatment for PTCL. CC-486 at 300 mg daily was administered for 7 days before C1 of CHOP, and for 14 days before CHOP C2-6. The primary end point was end-of-treatment complete response (CR). Secondary end points included safety and survival. Correlative studies assessed mutations, gene expression, and methylation in tumor samples. Grade 3 to 4 hematologic toxicities were mostly neutropenia (71%), with febrile neutropenia uncommon (14%). Nonhematologic toxicities included fatigue (14%) and gastrointestinal symptoms (5%). In 20 evaluable patients, CR was 75%, including 88.2% for PTCL-TFH (n = 17). The 2-year progression-free survival (PFS) was 65.8% for all and 69.2% for PTCL-TFH, whereas 2-year overall survival (OS) was 68.4% for all and 76.1% for PTCL-TFH. The frequencies of the TET2, RHOA, DNMT3A, and IDH2 mutations were 76.5%, 41.1%, 23.5%, and 23.5%, respectively, with TET2 mutations significantly associated with CR (P = .007), favorable PFS (P = .004) and OS (P = .015), and DNMT3A mutations associated with adverse PFS (P = .016). CC-486 priming contributed to the reprograming of the tumor microenvironment by upregulation of genes related to apoptosis (P < .01) and inflammation (P < .01). DNA methylation did not show significant shift. This safe and active regimen is being further evaluated in the ALLIANCE randomized study A051902 in CD30-negative PTCL. This trial was registered at www.clinicaltrials.gov as #NCT03542266.


Sujets)
Lymphome T périphérique , Humains , Lymphome T périphérique/anatomopathologie , Azacitidine/effets indésirables , Doxorubicine , Prednisone/effets indésirables , Vincristine , Cyclophosphamide/effets indésirables , Facteurs immunologiques/usage thérapeutique , Protocoles de polychimiothérapie antinéoplasique/effets indésirables , Microenvironnement tumoral
6.
Int J Mol Sci ; 24(9)2023 May 08.
Article Dans Anglais | MEDLINE | ID: covidwho-2315805

Résumé

Obesity is on the rise worldwide, and consequently, obesity-related non-communicable diseases are as well. Nutritional overload induces metabolic adaptations in an attempt to restore the disturbed balance, and the byproducts of the mechanisms at hand include an increased generation of reactive species. Obesity-related oxidative stress causes damage to vulnerable systems and ultimately contributes to neoplastic transformation. Dysfunctional obese adipose tissue releases cytokines and induces changes in the cell microenvironment, promoting cell survival and progression of the transformed cancer cells. Other than the increased risk of cancer development, obese cancer patients experience higher mortality rates and reduced therapy efficiency as well. The fact that obesity is considered the second leading preventable cause of cancer prioritizes the research on the mechanisms connecting obesity to cancerogenesis and finding the solutions to break the link. Oxidative stress is integral at different stages of cancer development and advancement in obese patients. Hypocaloric, balanced nutrition, and structured physical activity are some tools for relieving this burden. However, the sensitivity of simultaneously treating cancer and obesity poses a challenge. Further research on the obesity-cancer liaison would offer new perspectives on prevention programs and treatment development.


Sujets)
Tumeurs , Obésité , Humains , Obésité/métabolisme , Stress oxydatif , Tissu adipeux/métabolisme , Tumeurs/étiologie , Tumeurs/métabolisme , Cytokines/métabolisme , Microenvironnement tumoral
7.
Front Immunol ; 14: 1174184, 2023.
Article Dans Anglais | MEDLINE | ID: covidwho-2290751

Résumé

The corona virus disease 2019 (COVID-19) global pandemic has had an unprecedented and persistent impact on oncological practice, especially for patients with lung cancer, who are more vulnerable to the virus than the normal population. Indeed, the onset, progression, and prognosis of the two diseases may in some cases influence each other, and inflammation is an important link between them. The original chronic inflammatory environment of lung cancer patients may increase the risk of infection with COVID-19 and exacerbate secondary damage. Meanwhile, the acute inflammation caused by COVID-19 may induce tumour progression or cause immune activation. In this article, from the perspective of the immune microenvironment, the pathophysiological changes in the lungs and whole body of these special patients will be summarised and analysed to explore the possible immunological storm, immunosuppression, and immune escape phenomenon caused by chronic inflammation complicated by acute inflammation. The effects of COVID-19 on immune cells, inflammatory factors, chemokines, and related target proteins in the immune microenvironment of tumours are also discussed, as well as the potential role of the COVID-19 vaccine and immune checkpoint inhibitors in this setting. Finally, we provide recommendations for the treatment of lung cancer combined with COVID-19 in this special group.


Sujets)
COVID-19 , Tumeurs du poumon , Humains , Vaccins contre la COVID-19 , SARS-CoV-2 , Inflammation , Immunité , Microenvironnement tumoral
8.
Adv Sci (Weinh) ; 10(5): e2206001, 2023 02.
Article Dans Anglais | MEDLINE | ID: covidwho-2286536

Résumé

Tumor-associated adipocytes (TAAs) recruit monocytes and promote their differentiation into tumor-associated macrophages (TAMs) that support tumor development. Here, TAAs are engineered to promote the polarization of TAMs to the tumor suppressive M1 phenotype. Telratolimod, a toll-like receptor 7/8 agonist, is loaded into the lipid droplets of adipocytes to be released at the tumor site upon tumor cell-triggered lipolysis. Locally administered drug-loaded adipocytes increased tumor suppressive M1 macrophages in both primary and distant tumors and suppressed tumor growth in a melanoma model. Furthermore, drug-loaded adipocytes improved CD8+ T cell-mediated immune responses within the tumor microenvironment and favored dendritic cell maturation in the tumor draining lymph nodes.


Sujets)
Mélanome , Macrophages associés aux tumeurs , Humains , Macrophages , Immunothérapie , Adipocytes/anatomopathologie , Microenvironnement tumoral
9.
Cancer Metastasis Rev ; 42(1): 9-12, 2023 03.
Article Dans Anglais | MEDLINE | ID: covidwho-2266618
10.
BMC Neurol ; 22(1): 139, 2022 Apr 12.
Article Dans Anglais | MEDLINE | ID: covidwho-2268723

Résumé

BACKGROUND: Glioblastoma multiforme (GBM) is the most common aggressive malignant brain tumor. However, the molecular mechanism of glioblastoma formation is still poorly understood. To identify candidate genes that may be connected to glioma growth and development, weighted gene co-expression network analysis (WGCNA) was performed to construct a gene co-expression network between gene sets and clinical characteristics. We also explored the function of the key candidate gene. METHODS: Two GBM datasets were selected from GEO Datasets. The R language was used to identify differentially expressed genes. WGCNA was performed to construct a gene co-expression network in the GEO glioblastoma samples. A custom Venn diagram website was used to find the intersecting genes. The GEPIA website was applied for survival analysis to determine the significant gene, FUBP3. OS, DSS, and PFI analyses, based on the UCSC Cancer Genomics Browser, were performed to verify the significance of FUBP3. Immunohistochemistry was performed to evaluate the expression of FUBP3 in glioblastoma and adjacent normal tissue. KEGG and GO enrichment analyses were used to reveal possible functions of FUBP3. Microenvironment analysis was used to explore the relationship between FUBP3 and immune infiltration. Immunohistochemistry was performed to verify the results of the microenvironment analysis. RESULTS: GSE70231 and GSE108474 were selected from GEO Datasets, then 715 and 694 differentially expressed genes (DEGs) from GSE70231 and GSE108474, respectively, were identified. We then performed weighted gene co-expression network analysis (WGCNA) and identified the most downregulated gene modules of GSE70231 and GSE108474, and 659 and 3915 module genes from GSE70231 and GSE108474, respectively, were selected. Five intersection genes (FUBP3, DAD1, CLIC1, ABR, and DNM1) were calculated by Venn diagram. FUBP3 was then identified as the only significant gene by survival analysis using the GEPIA website. OS, DSS, and PFI analyses verified the significance of FUBP3. Immunohistochemical analysis revealed FUBP3 expression in GBM and adjacent normal tissue. KEGG and GO analyses uncovered the possible function of FUBP3 in GBM. Tumor microenvironment analysis showed that FUBP3 may be connected to immune infiltration, and immunohistochemistry identified a positive correlation between immune cells (CD4 + T cells, CD8 + T cells, and macrophages) and FUBP3. CONCLUSION: FUBP3 is associated with immune surveillance in GBM, indicating that it has a great impact on GBM development and progression. Therefore, interventions involving FUBP3 and its regulatory pathway may be a new approach for GBM treatment.


Sujets)
Glioblastome , Marqueurs biologiques tumoraux , Canaux chlorure/génétique , Biologie informatique/méthodes , Protéines de liaison à l'ADN/génétique , Analyse de profil d'expression de gènes/méthodes , Régulation de l'expression des gènes tumoraux/génétique , Glioblastome/anatomopathologie , Humains , Pronostic , Facteurs de transcription/génétique , Microenvironnement tumoral
11.
Int J Mol Sci ; 24(1)2022 Dec 25.
Article Dans Anglais | MEDLINE | ID: covidwho-2246753

Résumé

Neutrophil extracellular traps (NETs) are extracellular fibrous networks consisting of depolymerized chromatin DNA skeletons with a variety of antimicrobial proteins. They are secreted by activated neutrophils and play key roles in host defense and immune responses. Gastrointestinal (GI) malignancies are globally known for their high mortality and morbidity. Increasing research suggests that NETs contribute to the progression and metastasis of digestive tract tumors, among them gastric, colon, liver, and pancreatic cancers. This article explores the formation of NETs and reviews the role that NETs play in the gastrointestinal oncologic microenvironment, tumor proliferation and metastasis, tumor-related thrombosis, and surgical stress. At the same time, we analyze the qualitative and quantitative detection methods of NETs in recent years and found that NETs are specific markers of coronavirus disease 2019 (COVID-19). Then, we explore the possibility of NET inhibitors for the treatment of digestive tract tumor diseases to provide a new, efficient, and safe solution for the future therapy of gastrointestinal tumors.


Sujets)
COVID-19 , Pièges extracellulaires , Tumeurs gastro-intestinales , Thrombose , Humains , Pièges extracellulaires/métabolisme , COVID-19/anatomopathologie , Granulocytes neutrophiles , Tumeurs gastro-intestinales/métabolisme , Thrombose/métabolisme , Microenvironnement tumoral
12.
Curr Oncol ; 30(2): 1924-1944, 2023 02 05.
Article Dans Anglais | MEDLINE | ID: covidwho-2225090

Résumé

As per a recent study conducted by the WHO, 15.4% of all cancers are caused by infectious agents of various categories, and more than 10% of them are attributed to viruses. The emergence of COVID-19 has once again diverted the scientific community's attention toward viral diseases. Some researchers have postulated that SARS-CoV-2 will add its name to the growing list of oncogenic viruses in the long run. However, owing to the complexities in carcinogenesis of viral origin, researchers across the world are struggling to identify the common thread that runs across different oncogenic viruses. Classical pathways of viral oncogenesis have identified oncogenic mediators in oncogenic viruses, but these mediators have been reported to act on diverse cellular and multiple omics pathways. In addition to viral mediators of carcinogenesis, researchers have identified various host factors responsible for viral carcinogenesis. Henceforth owing to viral and host complexities in viral carcinogenesis, a singular mechanistic pathway remains yet to be established; hence there is an urgent need to integrate concepts from system biology, cancer microenvironment, evolutionary perspective, and thermodynamics to understand the role of viruses as drivers of cancer. In the present manuscript, we provide a holistic view of the pathogenic pathways involved in viral oncogenesis with special emphasis on alteration in the tumor microenvironment, genomic alteration, biological entropy, evolutionary selection, and host determinants involved in the pathogenesis of viral tumor genesis. These concepts can provide important insight into viral cancers, which can have an important implication for developing novel, effective, and personalized therapeutic options for treating viral cancers.


Sujets)
COVID-19 , Tumeurs , Humains , SARS-CoV-2 , Virus oncogènes , Tumeurs/génétique , Carcinogenèse , Génomique , Microenvironnement tumoral
13.
Front Immunol ; 13: 1012730, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-2215266

Résumé

Cyclic attractors generated from Boolean models may explain the adaptability of a cell in response to a dynamical complex tumor microenvironment. In contrast to this idea, we postulate that cyclic attractors in certain cases could be a systemic mechanism to face the perturbations coming from the environment. To justify our conjecture, we present a dynamic analysis of a highly curated transcriptional regulatory network of macrophages constrained into a cancer microenvironment. We observed that when M1-associated transcription factors (STAT1 or NF-κB) are perturbed and the microenvironment balances to a hyper-inflammation condition, cycle attractors activate genes whose signals counteract this effect implicated in tissue damage. The same behavior happens when the M2-associated transcription factors are disturbed (STAT3 or STAT6); cycle attractors will prevent a hyper-regulation scenario implicated in providing a suitable environment for tumor growth. Therefore, here we propose that cyclic macrophage phenotypes can serve as a reservoir for balancing the phenotypes when a specific phenotype-based transcription factor is perturbed in the regulatory network of macrophages. We consider that cyclic attractors should not be simply ignored, but it is necessary to carefully evaluate their biological importance. In this work, we suggest one conjecture: the cyclic attractors can serve as a reservoir to balance the inflammatory/regulatory response of the network under external perturbations.


Sujets)
Algorithmes , Microenvironnement tumoral , Réseaux de régulation génique , Macrophages , Facteurs de transcription/génétique
14.
Int Immunopharmacol ; 115: 109701, 2023 Feb.
Article Dans Anglais | MEDLINE | ID: covidwho-2179731

Résumé

Acute respiratory distress syndrome (ARDS) is associated with severe lung inflammation, edema, hypoxia, and high vascular permeability. The COVID-19-associated pandemic ARDS caused by SARS-CoV-2 has created dire global conditions and has been highly contagious. Chronic inflammatory disease enhances cancer cell proliferation, progression, and invasion. We investigated how acute lung inflammation activates the tumor microenvironment and enhances lung metastasis in LPS induced in vitro and in vivo models. Respiratory illness is mainly caused by cytokine storm, which further influences oxidative and nitrosative stress. The LPS-induced inflammatory cytokines made the conditions suitable for the tumor microenvironment in the lungs. In the present study, we observed that LPS induced the cytokine storm and promoted lung inflammation via BRD4, which further caused the nuclear translocation of p65 NF-κB and STAT3. The transcriptional activation additionally triggers the tumor microenvironment and lung metastasis. Thus, BRD4-regulated p65 and STAT3 transcriptional activity in ARDS enhances lung tumor metastasis. Moreover, LPS-induced ARDS might promote the tumor microenvironment and increase cancer metastasis into the lungs. Collectively, BRD4 plays a vital role in inflammation-mediated tumor metastasis and is found to be a diagnostic and molecular target in inflammation-associated cancers.


Sujets)
COVID-19 , Tumeurs du poumon , Pneumopathie infectieuse , , Humains , Protéines nucléaires/génétique , Lipopolysaccharides/pharmacologie , Microenvironnement tumoral , Syndrome de libération de cytokines , SARS-CoV-2 , Facteurs de transcription/génétique , Poumon/anatomopathologie , /induit chimiquement , Pneumopathie infectieuse/induit chimiquement , Inflammation , Protéines du cycle cellulaire/génétique
15.
J Neurooncol ; 161(1): 67-76, 2023 Jan.
Article Dans Anglais | MEDLINE | ID: covidwho-2174681

Résumé

PURPOSE: Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults with a median overall survival of only 14.6 months despite aggressive treatment. While immunotherapy has been successful in other cancers, its benefit has been proven elusive in GBM, mainly due to a markedly immunosuppressive tumor microenvironment. SARS-CoV-2 has been associated with the development of a pronounced central nervous system (CNS) inflammatory response when infecting different cells including astrocytes, endothelial cells, and microglia. While SARS-CoV2 entry factors have been described in different tissues, their presence and implication on GBM aggressiveness or microenvironment has not been studied on appropriate preclinical models. METHODS: We evaluated the presence of crucial SARS-CoV-2 entry factors: ACE2, TMPRSS2, and NRP1 in matched surgically-derived GBM tissue, cells lines, and organoids; as well as in human brain derived specimens using immunohistochemistry, confocal pixel line intensity quantification, and transcriptome analysis. RESULTS: We show that patient derived-GBM tissue and cell cultures express SARS-CoV2 entry factors, being NRP1 the most crucial facilitator of SARS-CoV-2 infection in GBM. Moreover, we demonstrate that, receptor expression remains present in our GBM organoids, making them an adequate model to study the effect of this virus in GBM for the potential development of viral therapies in the future. CONCLUSION: Our findings suggest that the SARS-CoV-2 virus entry factors are expressed in primary tissues and organoid models and could be potentially utilized to study the susceptibility of GBM to this virus to target or modulate the tumor microenviroment.


Sujets)
COVID-19 , Glioblastome , Adulte , Humains , Glioblastome/anatomopathologie , SARS-CoV-2 , ARN viral/métabolisme , ARN viral/usage thérapeutique , Cellules endothéliales/métabolisme , Organoïdes/métabolisme , Organoïdes/anatomopathologie , Microenvironnement tumoral
16.
J Med Virol ; 95(2): e28487, 2023 02.
Article Dans Anglais | MEDLINE | ID: covidwho-2173240

Résumé

We identified 14 immune-related differentially Expressed Genes (DEGs) between COVID-19 patients and normal controls and the receiver operator characteristic curve results showed that they could be used to discriminate COVID-19 patients from healthy controls. Single-sample gene set enrichment analysis and CIBERSORT analysis displayed immune landscape of COVID-19 patients that the fraction of immune cells (like B cell subtypes and T cell subtypes) decreased distinctly in the first SARS-CoV-2 infection which may further weaken immunity of cancer patients and increasing inflammatory cells (Neutrophils and Macrophages) may further promote inflammatory response of cancer patients. Based on expression levels of 14 DEGs we found that first SARS-CoV-2 infection may accelerate progression of cancer patients by Kaplan-Meier survival, immune subtypes and tumor microenvironment analyses, and may weaken anti-PD-1 monoclonal antibody treatment effect of cancer patients by weighted gene co-expression network, tumor mutation burden and microsatellite instability analysis. The second SARS-CoV-2 infection was beneficial to control development of tumor seemingly, but it may be difficult for cancer patients to experience destroy successfully from first SARS-CoV-2 infection, let alone benefits from second SARS-CoV-2 infection. In addition, this study also emphasized significance of multi-factor analysis when analyzing impacts of SARS-CoV-2 infection on cancer patients.


Sujets)
COVID-19 , Tumeurs , Humains , SARS-CoV-2 , Anticorps monoclonaux , Lymphocytes B , Microenvironnement tumoral
17.
Invest New Drugs ; 40(6): 1173-1184, 2022 12.
Article Dans Anglais | MEDLINE | ID: covidwho-2148841

Résumé

Melanoma has a high degree of malignancy and mortality. While there are some hopeful clinical trials for melanoma treatment in progress, they have not yet to yield significant long-term cure rates. Cancer vaccines including mRNA are currently one of the most promising strategy for tumor immunotherapy. The aim of this study was to analyze the potential tumor antigens in melanoma that could be used to develop mRNA vaccines and identify suitable vaccine populations. The gene expression data and complete clinical information of 471 melanoma samples and 1 normal tissue were retrieved from TCGA. Then, 812 samples of normal skin and their corresponding gene expression data were obtained from GTEx. Overexpressed genes, mutated genes and IRDEGs are used to identify potential tumor antigens. The relationship between the expression level of potential antigen and prognosis was analyzed in GEPIA, and then the immune cell infiltration was estimated based on TIMER algorithm. The expression profiles of IRDEGs were used to identify consensus clusters and immune subtypes of melanoma. Finally, mutational status and immune microenvironment characterization in immune subtypes were analyzed. Five tumor antigens (PTPRC, SIGLEC10, CARD11, LILRB1, ADAMDEC1) were identified as potential tumor antigens according to overexpressed genes, mutated genes and immune-related genes. They were all associated with OS, DFS and APCs. We identified two immune subtypes of melanoma, named IS1 and IS2, which exhibit different clinical features and immune landscapes. Based on the different immune landscape, we may conclude that IS1 is immunophenotypically "cold", while IS2 is "hot". The present research implicates that PTPRC, SIGLEC10, CARD11, LILRB1 and ADAMDEC1 may be the antigenic targets for melanoma mRNA vaccines and IS2 patients may be more effective to these vaccines.


Sujets)
Vaccins anticancéreux , Mélanome , Humains , Antigènes néoplasiques/génétique , Antigènes spécifiques du mélanome , Récepteur B1 de type immunoglobuline des leucocytes , Mélanome/génétique , Mélanome/thérapie , Vaccins anticancéreux/usage thérapeutique , ARN messager/génétique , Microenvironnement tumoral
18.
Histopathology ; 82(1): 170-188, 2023 Jan.
Article Dans Anglais | MEDLINE | ID: covidwho-2161606

Résumé

Neoadjuvant chemotherapy (NACT) has become the standard of care for high-risk breast cancer, including triple-negative (TNBC) and HER2-positive disease. As a result, handling and reporting of breast specimens post-NACT is part of routine practice, and it is important for pathologists to recognise the changes in tumour cells, tumour-associated stroma and background breast tissue induced by NACT. Familiarity with characteristic stromal features enables identification of the pre-treatment tumour site and allows confident diagnosis of pathological complete response (pCR) which is important for decisions concerning adjuvant therapy. Neoadjuvant endocrine therapy (NAET) is used less frequently than NACT; however, the SARS-COVID-19 pandemic has changed practice, with increased use as bridging therapy if surgery is delayed. NAET also induces characteristic changes in the tumour and stroma. Changes in the tumour microenvironment following NACT and NAET are also described. Immunotherapy is approved for use in advanced TNBC, and there are several trials exploring its role in early TNBC in the neoadjuvant setting. The current biomarker to determine eligibility for treatment with immune checkpoint inhibitors is programmed death ligand-1 (PD-L1) immunohistochemistry; however, this is complicated by lack of standardisation with different drugs linked to tests using different antibodies with different scoring systems. The situation in the neoadjuvant setting is further complicated by improved pCR rates for PD-L1-positive tumours in both immune therapy and placebo arms. Alternative biomarkers are urgently needed to identify which patients will derive benefit from immunotherapy and key candidates are discussed.


Sujets)
Tumeurs du sein , COVID-19 , Humains , Femelle , Traitement néoadjuvant , Tumeurs du sein/diagnostic , Tumeurs du sein/thérapie , Antigène CD274 , Pandémies , Microenvironnement tumoral
19.
Cells ; 11(24)2022 12 10.
Article Dans Anglais | MEDLINE | ID: covidwho-2154907

Résumé

OBJECTIVE: Glioma is the most common primary malignancy of the adult central nervous system (CNS), with a poor prognosis and no effective prognostic signature. Since late 2019, the world has been affected by the rapid spread of SARS-CoV-2 infection. Research on SARS-CoV-2 is flourishing; however, its potential mechanistic association with glioma has rarely been reported. The aim of this study was to investigate the potential correlation of SARS-CoV-2-related genes with the occurrence, progression, prognosis, and immunotherapy of gliomas. METHODS: SARS-CoV-2-related genes were obtained from the human protein atlas (HPA), while transcriptional data and clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Glioma samples were collected from surgeries with the knowledge of patients. Differentially expressed genes were then identified and screened, and seven SARS-CoV-2 related genes were generated by LASSO regression analysis and uni/multi-variate COX analysis. A prognostic SARS-CoV-2-related gene signature (SCRGS) was then constructed based on these seven genes and validated in the TCGA validation cohort and CGGA cohort. Next, a nomogram was established by combining critical clinicopathological data. The correlation between SCRGS and glioma related biological processes was clarified by Gene set enrichment analysis (GSEA). In addition, immune infiltration and immune score, as well as immune checkpoint expression and immune escape, were further analyzed to assess the role of SCRGS in glioma-associated immune landscape and the responsiveness of immunotherapy. Finally, the reliability of SCRGS was verified by quantitative real-time polymerase chain reaction (qRT-PCR) on glioma samples. RESULTS: The prognostic SCRGS contained seven genes, REEP6, CEP112, LARP4B, CWC27, GOLGA2, ATP6AP1, and ERO1B. Patients were divided into high- and low-risk groups according to the median SARS-CoV-2 Index. Overall survival was significantly worse in the high-risk group than in the low-risk group. COX analysis and receiver operating characteristic (ROC) curves demonstrated excellent predictive power for SCRGS for glioma prognosis. In addition, GSEA, immune infiltration, and immune scores indicated that SCRGS could potentially predict the tumor microenvironment, immune infiltration, and immune response in glioma patients. CONCLUSIONS: The SCRGS established here can effectively predict the prognosis of glioma patients and provide a potential direction for immunotherapy.


Sujets)
COVID-19 , Gliome , Vacuolar Proton-Translocating ATPases , Adulte , Humains , SARS-CoV-2/génétique , Reproductibilité des résultats , COVID-19/génétique , Immunothérapie , Gliome/génétique , Gliome/thérapie , Microenvironnement tumoral , Cyclophilines , Protéines de l'oeil , Protéines membranaires
20.
Front Immunol ; 13: 978760, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-2043449

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected half a billion people, including vulnerable populations such as cancer patients. While increasing evidence supports the persistence of SARS-CoV-2 months after a negative nasopharyngeal swab test, the effects on long-term immune memory and cancer treatment are unclear. In this report, we examined post-COVID-19 tissue-localized immune responses in a hepatocellular carcinoma (HCC) patient and a colorectal cancer (CRC) patient. Using spatial whole-transcriptomic analysis, we demonstrated spatial profiles consistent with a lymphocyte-associated SARS-CoV-2 response (based on two public COVID-19 gene sets) in the tumors and adjacent normal tissues, despite intra-tumor heterogeneity. The use of RNAscope and multiplex immunohistochemistry revealed that the spatial localization of B cells was significantly associated with lymphocyte-associated SARS-CoV-2 responses within the spatial transcriptomic (ST) niches showing the highest levels of virus. Furthermore, single-cell RNA sequencing data obtained from previous (CRC) or new (HCC) ex vivo stimulation experiments showed that patient-specific SARS-CoV-2 memory B cells were the main contributors to this positive association. Finally, we evaluated the spatial associations between SARS-CoV-2-induced immunological effects and immunotherapy-related anti-tumor immune responses. Immuno-predictive scores (IMPRES) revealed consistent positive spatial correlations between T cells/cytotoxic lymphocytes and the predicted immune checkpoint blockade (ICB) response, particularly in the HCC tissues. However, the positive spatial correlation between B cells and IMPRES score was restricted to the high-virus ST niche. In addition, tumor immune dysfunction and exclusion (TIDE) analysis revealed marked T cell dysfunction and inflammation, alongside low T cell exclusion and M2 tumor-associated macrophage infiltration. Our results provide in situ evidence of SARS-CoV-2-generated persistent immunological memory, which could not only provide tissue protection against reinfection but may also modulate the tumor microenvironment, favoring ICB responsiveness. As the number of cancer patients with COVID-19 comorbidity continues to rise, improved understanding of the long-term immune response induced by SARS-CoV-2 and its impact on cancer treatment is much needed.


Sujets)
COVID-19 , Carcinome hépatocellulaire , Tumeurs du foie , Comorbidité , Humains , Inhibiteurs de points de contrôle immunitaires , Mémoire immunologique , Morbidité , SARS-CoV-2 , Transcriptome , Microenvironnement tumoral/génétique
SÉLECTION CITATIONS
Détails de la recherche